Minireview: Development and differentiation of gut endocrine cells.

نویسندگان

  • Susan E Schonhoff
  • Maryann Giel-Moloney
  • Andrew B Leiter
چکیده

For over 30 yr, it has been known that enteroendocrine cells derive from common precursor cells in the intestinal crypts. Until recently, relatively little was understood about the events that result in commitment to endocrine differentiation or the segregation of over 10 different hormone-expressing cell types in the gastrointestinal tract. The earliest cell fate decisions appear to be regulated by the Notch signaling pathway. Notch is inactive in endocrine precursor cells, allowing for expression of the proendocrine basic helix-loop-helix proteins Math1 and neurogenin3. Differentiating precursor cells activate Notch in neighboring cells to switch off expression of proendocrine factors and inhibit endocrine differentiation. Math1 is the first factor involved in endocrine specification, committing cells to become one of three secretory lineages-goblet, Paneth, and enteroendocrine. Neurogenin3 appears to be a downstream target that is essential for endocrine cell differentiation. Events that control the segregation of each mature lineage from progenitor cells have not been characterized in detail. The transcription factors Pax4, Pax6, BETA2/NeuroD, and pancreatic-duodenal homeobox 1 have all been implicated in enteroendocrine differentiation. BETA2/NeuroD appears to coordinate secretin gene expression in S-type enteroendocrine cells with cell cycle arrest as cells terminally differentiate. Powerful genetic approaches have established the murine intestine as the most important model for studying enteroendocrine differentiation. Enteroendocrine cells in the mouse are remarkably similar to those in humans, making it likely that insights learned from the mouse may contribute to both our understanding and treatment of a variety of human disorders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

sept7b is required for the differentiation of pancreatic endocrine progenitors

Protection or restoration of pancreatic β-cell mass as a therapeutic treatment for type 1 diabetes requires understanding of the mechanisms that drive the specification and development of pancreatic endocrine cells. Septins are filamentous small GTPases that function in the regulation of cell division, cytoskeletal organization and membrane remodeling, and are involved in various tissue-specifi...

متن کامل

The distribution of endocrine cell progenitors in the gut of chick embryos.

The aim of this experiment was to find out whether or not, at early stages of development, progenitors of the various types of gut endocrine cells are localized to one or more specific regions of the gastrointestinal tract. Transverse strips of blastoderm two to four somites in length were excised between the levels of somites 5 and 27 in chick embryos at 5- to 24-somite stages and were culture...

متن کامل

Ectopic pancreas formation in Hes1 -knockout mice reveals plasticity of endodermal progenitors of the gut, bile duct, and pancreas.

Ectopic pancreas is a developmental anomaly occasionally found in humans. Hes1, a main effector of Notch signaling, regulates the fate and differentiation of many cell types during development. To gain insights into the role of the Notch pathway in pancreatic fate determination, we combined the use of Hes1-knockout mice and lineage tracing employing the Cre/loxP system to specifically mark panc...

متن کامل

Pax 4 and 6 regulate gastrointestinal endocrine cell development

The mechanisms behind the cell-specific and compartmentalized expression of gut and pancreatic hormones is largely unknown. We hereby report that deletion of the Pax 4 gene virtually eliminates duodenal and jejunal hormone-secreting cells, as well as serotonin and somatostatin cells of the distal stomach, while deletion of the Pax 6 gene eliminates duodenal GIP cells as well as gastrin and soma...

متن کامل

Review of Differentiation and Proliferation of Primordial Germ Cells in Culture

Primordial germ cells (PGCs) are highly specialized cell population that arises from the epiblast in vivo. There are three critical steps in the life cycle of these cells: 1-Specification 2-migration and proliferation 3-prenatal and postnatal sex specific development. Specification of germ cells in epiblast occurs due to signals secreted from extraembryonic tissues. Primordial germ cells are re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Endocrinology

دوره 145 6  شماره 

صفحات  -

تاریخ انتشار 2004